Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440709

RESUMO

All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.


Assuntos
Imunidade Adaptativa , Sistema Imunitário/imunologia , Imunidade Inata , Voo Espacial , Ausência de Peso/efeitos adversos , Animais , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Mecanotransdução Celular , Simulação de Ausência de Peso/efeitos adversos
2.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199262

RESUMO

As the number of manned space flights increase, studies on the effects of microgravity on the human body are becoming more important. Due to the high expense and complexity of sending samples into space, simulated microgravity platforms have become a popular way to study these effects on earth. In addition, simulated microgravity has recently drawn the attention of regenerative medicine by increasing cell differentiation capability. These platforms come with many advantages as well as limitations. A main limitation for usage of these platforms is the lack of high-throughput capability due to the use of large cell culture vessels. Therefore, there is a requirement for microvessels for microgravity platforms that limit waste and increase throughput. In this work, a microvessel for commercial cell culture plates was designed. Four 3D printable (polycarbonate (PC), polylactic acid (PLA) and resin) and castable (polydimethylsiloxane (PDMS)) materials were assessed for biocompatibility with adherent and suspension cell types. PDMS was found to be the most suitable material for microvessel fabrication, long-term cell viability and proliferation. It also allows for efficient gas exchange, has no effect on cell culture media pH and does not induce hypoxic conditions. Overall, the designed microvessel can be used on simulated microgravity platforms as a method for long-term high-throughput biomedical studies.


Assuntos
Técnicas de Cultura de Células/métodos , Microvasos/fisiologia , Engenharia Tecidual/métodos , Simulação de Ausência de Peso , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Células Jurkat , Teste de Materiais , Microvasos/efeitos dos fármacos , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...